- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Apel, Eric C. (1)
-
Calahorrano, Julieta Juncosa (1)
-
Campos, Teresa (1)
-
Collett, Jr., Jeffrey L. (1)
-
Farmer, Delphine K. (1)
-
Fischer, Emily V. (1)
-
Flocke, Frank (1)
-
Garofalo, Lauren A. (1)
-
Hills, Alan J. (1)
-
Hornbrook, Rebecca S. (1)
-
Hu, Lu (1)
-
Kreidenweis, Sonia M. (1)
-
Lindaas, Jakob (1)
-
Montzka, Denise D. (1)
-
O'Dell, Katelyn (1)
-
Palm, Brett B. (1)
-
Peng, Qiaoyun (1)
-
Permar, Wade (1)
-
Pierce, Jeffrey R. (1)
-
Pollack, Ilana B. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Wildfires are a major source of gas‐phase ammonia (NH3) to the atmosphere. Quantifying the evolution and fate of this NH3is important to understanding the formation of secondary aerosol in smoke and its accompanying effects on radiative balance and nitrogen deposition. Here, we use data from the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) to add new empirical constraints on the e‐folding loss timescale of NH3and its relationship with particulate ammonium (pNH4) within wildfire smoke plumes in the western U.S. during summer 2018. We show that the e‐folding loss timescale of NH3with respect to particle‐phase partitioning ranges from ∼24 to ∼4000 min (median of 55 min). Within these same plumes, oxidation of nitrogen oxides is observed concurrent with increases in the fraction ofpNH4in each plume sampled, suggesting that formation of ammonium nitrate (NH4NO3) is likely. We find wide variability in how close ourin situmeasurements of NH4NO3are to those expected in a dry thermodynamic equilibrium, and find that NH4NO3is most likely to form in fresh, dense smoke plumes injected at higher altitudes and colder temperatures. In chemically older smoke we observe correlations between both the fraction ofpNH4and the fraction of particulate nitrate (pNO3) in the aerosol with temperature, providing additional evidence of the presence of NH4NO3and the influence of injection height on gas‐particle partitioning of NH3.more » « less
An official website of the United States government
